Rotational Equilibrium

An object in translational equilibrium is not accelerating in the x or y directions, but it still could be rotating. An object in rotational equilibrium is not rotating.

For an object to be in rotational equilibrium the total <u>forque</u> on it must be zero.

Torque is a rotational vector it works either: clackwise counter clackwise

Consider tightening a bolt with a wrench, if the bolt needs 24 Nm of torque to tighten it:

How much force must be applied if using a 0.20 m long wrench?

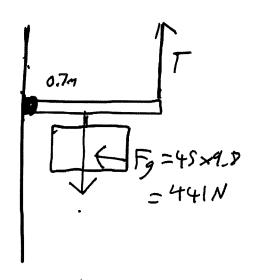
sing a 0.20 m long wrench?
$$T = Fd$$

$$1 \quad 02m \quad 1$$

$$1 \quad T = Fd$$

 $\frac{24Nn}{0.2m} = |20N$

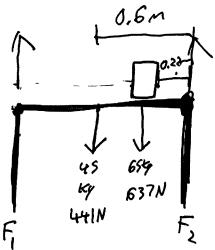
How much force must be applied if using a 1.00 m long wrench?


$$F = \frac{T}{J} = \frac{34}{1} = 24N$$

Two kids sit on a see saw, if it is in rotational equilibrium the torques on each kid must cancel out.

One kid is 1.00 m from the centre and has mass of 25.0 kg, the other kid is 35.0 kg and is 0.7143 m from the centre. Is the see-saw in rotational equilibrium?

In rotational equilibrium


EXAMPLE: A 45 kg sign is attached to the middle of a 1.4 m long board of negligible mass which is connected to a wall with a hinge. The board is supported also by a rope. What is the tension in the rope? What are the forces acting on the hinge? \bullet

Physics 12

Booklet #1

EXAMPLE: A stone table top of length 1.2 metres has a mass of 45 kg, a 65 kg pile of bricks is placed 0.22 metres from the right side of the table. What are the support forces provided by each side of the table?

$$F_{1} \times 1.2m = 441 \times 0.6m + 637 \times 0.22m$$

 $F_{1} \times 1.2m = 404.74Nm$

$$F_{i} = \frac{404.74Nn}{1.2m} = 337.28N$$

$$F_{\nu\rho} = F_{down}$$

$$337.28 + F_2 = 441N + 637N$$

$$337.28 + F_2 = 1078N$$

$$-337.28 - 337.28$$

$$F_2 = 740.72N$$